Teacher telling in the mathematics classroom: A microlevel study of the dynamics between general and contextualized knowledge

Authors

  • Aurelie Chesnais University of Montpellier
  • Julie Horoks Paris-Est Créteil University
  • Aline Robert CY Cergy Paris University
  • Janine Rogalski Paris Cité University

Keywords:

teaching practices, teacher telling, students’ activity, secondary school mathematics, generalization, whole class scaffolding, activity theory, double approach

Abstract

In this article, we analyze moments of teacher telling (MTT) involving the exposition of new knowledge to students. We first specify the theoretical framework used for our analyses and describe our global methodology, focusing on teacher telling moments as taking part in the students’ mathematics learning. Then, we review the literature on this topic and develop a specific tool, called a “proximity,” to study MMTs in relation to whole-class scaffolding. Finally, we compare two high school teachers’ practices in teaching the same content — variation of functions for 10th grade students — to illustrate this new analytical lens. In the conclusion, we discuss our approach and develop several research perspectives.

Author Biographies

Aurelie Chesnais, University of Montpellier

is a professor at the Faculty of Education at the University of Montpellier attached to the Interdisciplinary Research Laboratory in Didactics, Education and Training (LIRDEF). Her research focuses on mathematics teaching practices, learning inequalities in mathematics, and the professional development of mathematics teachers. aurelie.chesnais@umontpellier.fr

Julie Horoks, Paris-Est Créteil University

is a professor at the Laboratoire de Didactique André Revuz at Paris Est- Créteil University. Her research work focuses on teaching practices in mathematics, and more specifically for the assessment of student learning, and on teachers’ professional development. julie.horoks@u-pec.fr

Aline Robert, CY Cergy Paris University

is a researcher in mathematics didactics associated with the Laboratoire de Didactique André Revuz. Her work is focused on the teaching of mathematics at the university level, on mathematics teachers’ practices, and on the professional training of secondary school mathematics teachers. Her research is based on activity theory, with a marked methodological orientation (analysis of tasks and of their implementation in class) and an attempt to operationalize Vygostki’s ZPD model at several levels. robertaline.robertaline@orange.fr

Janine Rogalski, Paris Cité University

is an honorary CNRS research director associated with the Laboratoire de Didactique André Revuz at Paris Cité University. She has a PhD in the didactics of mathematics and an HDR (habilitation to supervise research) in psychology. Her research work falls within the framework of activity theory (Vygotsky, Leontiev, Leplat) and concerns mathematics / computer science didactics (education) and vocational didactics (professional training) to analyze teachers’ and teacher educators’ activity. She is also involved in a group studying the history of work and students’ and workers’ guidance (GRESHTO, CNAM Paris). rogalski.muret@gmail.com

References

Abboud, M., Robert, A., & Rogalski, J. (2020). Educating mathematics teacher educators: The transposition of didactical research and the development of researchers and teachers educators. In K. Beswick & O. Chapman (Eds.), International handbook of mathematics teacher education: Vol. 4. The mathematics teacher educator as a developing professional (2nd ed., pp. 131–156). Brill.

Bakker, A., Smit, J., & Wegerif, R. (2015). Scaffolding and dialogic teaching in mathematics education: Introduction and review. ZDM – Mathematics Education, 47(7), 1047–1065. https://doi.org/10.1007/s11858-015-0738-8

Baxter, J. A., & Williams, S. (2010). Social and analytic scaffolding in middle school mathematics: Managing the dilemma of telling. Journal of Mathematics Teacher Education, 13(1), 7–26. https://doi.org/10.1007/s10857-009-9121-4

Bills, L., Dreyfus, T., Mason, J., Tsamir, P., Watson, A., & Zaslavsky, O. (2006). Exemplification in mathematics education. In J. Novotná, H. Moraová, M. Krátká, & N. Stehliková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education: Vol. 1. Plenaries, research forums, discussion groups, working session, short oral communications, posters (pp. 126–154). PME.

Bridoux, S., Grenier-Boley, N., Hache, C., & Robert, A. (2016). Les moments d'exposition des connaissances en mathématiques, analyses et exemples. Annales de didactiques et de sciences cognitives, 21, 187–233. https://doi.org/10.4000/adsc.813

Bruner, J. S. (1983). Le développement de l'enfant : Savoir faire, savoir dire. PUF.

Chappet-Pariès, M., Pilorge, F., & Robert, A. (2017a). Un scénario de formation de formateurs : Les activités d’introduction, les moments d’exposition des connaissances et les capsules pour la classe inversée, s’appuyant sur le thème « sens de variation des fonctions » en seconde. Document pour la formation des enseignants (No. 16). IREM Université Paris Diderot. http://docs.irem.univ-paris-diderot.fr/up/IPS17004.pdf

Chappet-Pariès, M., Pilorge, F., & Robert, A. (2017b). Pour étudier le dispositif classe inversée : Analyses des moments d'exposition des connaissances en classe et de capsules vidéos. Petit x, 105, 37–72. https://irem.univ-grenoble-alpes.fr/revues/petit-x/consultation/numero-105-petit-x/4-pour-etudier-le-dispositif-classe-inversee-analyses-des-moments-d-exposition-des-connaissances-en-classe-et-de-capsules-videos--505542.kjsp

Chesnais, A., (2011). Apprentissages en mathématiques en sixième : Contextes différents, pratiques différentes et inégalités. Revue française de pédagogie, 176, 57–72. https://doi.org/10.4000/rfp.3162

Engeström, Y., & Sannino, A. (2010). Studies of expansive learning: Foundations, findings and future challenges. Educational Research Review, 5(1), 1–24. https://doi.org/10.1016/j.edurev.2009.12.002

Horoks, J. (2006). Les triangles semblables en classe de 2nde : Des enseignements aux apprentissages : Étude de cas [Doctoral dissertation, Paris 7]. https://hal.science/tel-01136889v1/file/th%C3%A8se%20HOROKS.pdf

Horoks, J., & Robert, A. (2007). Tasks designed to highlight task-activity relationships. Journal of Mathematics Teacher Education, 10(4–6), 279–287. https://doi.org/10.1007/s10857-007-9040-1

Leontiev, A. N. (1978). Activity, consciousness, and personality. Prentice Hall. (Original work published 1972)

Lobato, J., Clarke, D., & Ellis, A. B. (2005). Initiating and eliciting in teaching: A reformulation of telling. Journal for Research in Mathematics Education, 36(2), 101–136. https://doi.org/10.2307/30034827

Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational Studies in Mathematics, 15(3), 277–289. https://doi.org/10.1007/BF00312078

Potari, D., & Jaworski, B. (2002). Tackling complexity in mathematics teaching development: Using the teaching triad as a tool for reflection and analysis. Journal of Mathematics Teacher Education, 5, 351–380. https://doi.org/10.1023/A:1021214604230

Robert, A. (2012). A didactical framework for studying students’ and teachers’ Activities when learning and Teaching Mathematics. International Journal for Technology in Mathematics Education, 19(4), 153–158.

Robert, A., & Rogalski, J. (2005). A cross-analysis of the mathematics teacher’s activity: An example in a French 10th-grade class. Educational Studies in Mathematics, 59, 269–298. https://doi.org/10.1007/s10649-005-5890-6

Robert, A., & Rogalski, J. (2020). D’un problème d’optimisation d’une surface agricole au cours sur le sens de variation en seconde : Une étude de cas. Cahiers du laboratoire de didactique André Revuz (No. 22). IREM Université Paris Diderot. http://docs.irem.univ-paris-diderot.fr/up/publications/IPS20009.pdf

Robert, A., & Vandebrouck, F. (2014). Proximités-en-acte mises en jeu en classe par les enseignants du secondaire et ZPD des élèves : Analyses de séances sur des tâches complexes. Recherches en Didactique des Mathématiques, 34(2–3), 239–285. https://revue-rdm.com/2014/proximites-en-acte-mises-en-jeu-en/

Rogalski, J. (2013). Theory of activity and developmental frameworks for an analysis of teachers’ practices and students’ learning. In F. Vandebrouck (Ed.), Mathematics classroom: Students’ activities and teacher’s practices (pp. 3–23). Sense Publishers.

Simon, M. (2013). The need for theories of conceptual learning and teaching of mathematics. In K. R. Leatham (Ed.), Vital directions for mathematics research (pp. 95–118). Springer.

Smit, J., van Eerde, H. A. A., & Bakker, A. (2013). A conceptualisation of whole-class scaffolding. British Educational Research Journal, 39(5), 817–834. https://doi.org/10.1002/berj.3007

Smith, J. P., III. (1996). Efficacy and teaching mathematics by telling: A challenge for reform. Journal for Research in Mathematics Education, 27(4), 387–402. https://doi.org/10.5951/jresematheduc.27.4.0387

Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive mathematical discussions: Five practices for helping teachers move beyond show and tell. Mathematical Thinking and Learning, 10(4), 313–340. https://doi.org/10.1080/10986060802229675

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.

Wood, D., Bruner, J., & Ross G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Downloads

Published

2022-03-31

How to Cite

Chesnais, A., Horoks, J., Robert, A., & Rogalski, J. (2022). Teacher telling in the mathematics classroom: A microlevel study of the dynamics between general and contextualized knowledge. McGill Journal of Education / Revue Des Sciences De l’éducation De McGill, 57(2). Retrieved from https://mje.mcgill.ca/article/view/9907

Issue

Section

Articles