This is an outdated version published on 2021-07-11. Read the most recent version.



  • Ildiko Pelczer McGill
  • Elena Polotskaia Université du Québec en Outaouais
  • Olga Fellus Ottawa University


elementary school teaching, dyslexia, mathematics teaching, relational reasoning, word problem resolution


In our previous studies, we developed an approach to teaching problem-solving we termed Equilibrated Development that allows students to better understand the quantitative relationships that arise in a mathematical problem and to better choose a solution strategy. We used the method of a teaching experiment to evaluate the applicability of the developed approach to cases of students with dyslexia and to modify it, if necessary, to meet these students’ needs. Our data suggest that: a) the understanding of the mathematical structure of a problem is independent of the student's basic numerical knowledge, and b) there are conditions that allow a dyslexic student to develop mathematical reasoning to solve written problems despite difficulties in reading and writing of numbers and text.

Author Biographies

Ildiko Pelczer, McGill

ILDIKO PELCZER is an assistant professor at Concordia University. She holds a B.Sc. in Mathematics from Bucharest University; a master’s degree in Computer Science from the National Autonomous University of Mexico (UNAM), and a Ph.D. in Mathematics Education from Concordia University. Her interest is in studying the impact of mathematics competitions on student engagement, problem solving and understanding of mathematics. She is involved in organizing math competitions and outreach activities.

Elena Polotskaia, Université du Québec en Outaouais

ELENA POLOTSKAIA is a professor of mathematics education at the Université du Québec en Outaouais. She holds a B.Sc. in Mathematics Education from Moscow State Pedagogical University (MSPU) (1982), an M.Ed. in Mathematics Education from the Université de Montréal (1997), and a Ph.D. in Mathematics Education from McGill University (2015). She is currently interested in the difficulties of teaching mathematics and developmental teaching and learning. 

Olga Fellus, Ottawa University

Olga FELLUS holds a Ph.D. in Education, Teaching, Learning, and Evaluation; an M.A. in Translation and Interpretation; and an M.Ed. in TESOL. A former high school teacher, Olga's research interests focus on the intersection point of identity-making in mathematics, discourse, pragmatics, elementary mathematics, and educational change. Her recent publications include a paper that introduces a broader conceptualization of identity-making in mathematics education (Fellus, 2019); a duoethnographical approach to understanding Vygotsky's and Piaget's theories of learning (Fellus & Biton, 2017); and a cultural-historical study of the introduction of algebraic thinking into elementary mathematics (Freiman & Fellus, 2021). Olga is a past editor of the AERA Educational Change SIG Lead the Change series.


Bednarz, N. et Janvier, B. (1993). The arithmetic-algebra transition in problem solving: Continuities and discontinuities. Proceedings of the 15th Annual Meeting of the International Group for the Psychology of Mathematics Education (North American chapter), 2, 19–25.

Boote, S. K. et Boote, D. N. (2016). ABC problem in elementary mathematics education: Arithmetic before comprehension. Journal of Mathematics Teacher Education, 21(2), 99–122.

Davydov, V. V. (2008). Problems of developmental instruction: A theoretical and experimental psychological study. Nova Science.

Deshaies, I., Miron, J. M. et Masson, S. (2015). Comprendre le cerveau des élèves pour mieux les préparer aux apprentissages en arithmétique dès le préscolaire. Approche Neuropsychologique des Apprentissages chez l’Enfant [ANAE], 27(134), 39–45.

Fédération des syndicats de l’enseignement (FSE). (2013). Référentiel. Les élèves à risque et HDAA.

Jupri, A. et Drijvers, P. (2016). Student difficulties in mathematizing word problems in algebra. Eurasia Journal of Mathematics, Science & Technology Education, 12(9), 2481–2502.

Mancl, D. B. (2011). Investigating the effects of a combined problem-solving strategy for students with learning difficulties in mathematics (publication n°927) [thèse de doctorat, University of Nevada]. UNLV Theses, Dissertations, Professional Papers, and Capstones.

Ministère de l’Éducation, du Loisir et du Sport (MELS). (2001). Programme de formation de l’école québécoise. Éducation préscolaire. Enseignement primaire. Domaine de la mathématique, de la science et de la technologie.

Ministère de l’Éducation, du Loisir et du Sport (MELS). (2009). Document d’accompagnement. Progression des apprentissages : Mathématique.

Neef, N. A., Nelles, D. E., Iwata, B. A. et Page, T. J. (2003). Analysis of precurrent skills in solving mathematics story problems. Journal of Applied Behavior Analysis, 36(1), 21–33.

Peters, L., Bulthé, J., Daniels, N., Op de Beeck, H. et De Smedt, B. (2018). Dyscalculia and dyslexia: Different behavioral, yet similar brain activity profiles during arithmetic. NeuroImage: Clinical, 18(Juillet 2017), 663–674.

Polotskaia, E. et Freiman, V. (2016). Technopédagogie et apprentissage actif. Bulletin AMQ, LVI(3), 55–69.

Polotskaia, E. et Savard, A. (2018). Using the relational paradigm: effects on pupils’ reasoning in solving additive word problems. Research in Mathematics Education, 20(1), 70–90.

Savard, A., et Polotskaia, E. (2017). Who’s wrong? Tasks fostering understanding of mathematical relationships in word problems in elementary students. ZDM Mathematics Education, 49(6), 823–833. Schliemann, A. D., Liu, C., Carraher, D. W et Teixidor i Bigas, M. (2017, 3-5 avril). If y = 3x, is y greater than x? Teachers evolving understanding of operations on quantities [communication orale]. NCTM 2017 Research Conference, San Antonio, TX.

Simmons, F. R. et Singleton, C. (2008). Do weak phonological representations impact on arithmetic development? A review of research into arithmetic and dyslexia. Dyslexia, 14(2), 77–94. .

Steffe, L. P. et Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. Dans R. Lesh et A. E. Kelly (dir.), Research design in mathematics and science education (p. 267–307). Erlbaum.

Theis, L., Morin, M., Koudogbo, J., Tambone, J. et Marchand, P. (2014). Quelles fonctions potentielles d’un dispositif d’aide pour soutenir la résolution d’une situation-problème mathématique chez des élèves en difficulté du primaire? Éducation et Francophonie, XLII(2), 158–172.

Thompson, P. W. (1993). Quantitative reasoning, complexity, and additive structures*. Educational Studies in Mathematics, 25(3), 165–208.

Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52(2), 83-94.

Vygotsky, L. S. (1983). Osnovy Defectologii [Fondamentals of defectology]. Pedagogika.

Wagner, S., Mitchell, Z. et Goldin-Meadow, S. (2008). Gesturing makes learning last. Cognition, 106(2), 1047–1058.

Westwood, P. (2011). The problem with problems: Potential difficulties in implementing problem-based learning as the core method in primary school mathematics. Australian Journal of Learning Difficulties, 16(1), 5–18.




How to Cite

Pelczer, I., Polotskaia, E., & Fellus, O. (2021). WORD PROBLEM-SOLVING: THE CASE OF A STUDENT WITH DYSLEXIA. McGill Journal of Education / Revue Des Sciences De l’éducation De McGill, 55(2). Retrieved from